Convolutional Neural Networks for Text
Classification

Sebastian Sierra

MindLab Research Group

July 1, 2016

nd

m LAB

Sebastian Sierra (MindLab Research Group NLP Summer Class July 1, 2016 1/32

-MO




QOutline

© What is a Convolution?

© What are Convolutional Neural Networks?
© CNN for NLP

@ CNN hyperparameters

© Example: The Model

e Bibliography

nd

LAB

-MO

mi:

Sebastian Sierra (MindLab Research Group NLP Summer Class July 1, 2016 2/32




QOutline

© What is a Convolution?

m i LnACIIS

Sebastian Sierra (MindLab Research Group NLP Summer Class July 1, 2016 3/32



What is a Convolution?

o Convolutions are great for extracting features from Images.

@ Convolutional Neural Networks (CNN) are biologically-inspired
variants of MLPs
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© What are Convolutional Neural Networks?
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Convolutional Neural Network

Conveolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)

cat (0.04)
boat (0.94)
bird (0.02)

Figure 1: Close up of Convolutional Neural Network
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Convolutional Neural Network

@ CNNs are networks composed of several layers of convolutions with
nonlinear activation functions like ReLU or tanh applied to the results.

@ Traditional Layers are fully connected, instead CNN use local
connections.

@ Each layer applies different filters (thousands) like the ones showed
above, and combines their results.

m i LnACIIS

Sebastian Sierra (MindLab Research Group NLP Summer Class July 1, 2016 8 /32




Properties of Convolutional Neural Networks

@ Local Invariance

o Compositionality

Input image

Filter bank (to be learned) Feature maps m Q
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© CNN for NLP
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CNN in NLP

Do they make sense in NLP?

Perhaps Recurrent Neural Networks would make more sense trying to learn
patterns extracted from a text sequence. They are not cognitively or
linguistically plausible.

Advantage

There are fast GPU implementations for CNNs
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An example of how CNN work

3-gram filter
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An example of how CNN work
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An example of how CNN work
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An example of how CNN work

2-gram filter .
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An example of how CNN work
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2-gram filter .

.
mird

Sebastian Sierra (MindLab Research Group NLP Summer Class July 1, 2016 19 / 32



An example of how CNN work

Several filters
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An example of how CNN work

They are
fed to the
FC layer.

We expect to
capture high level
features at this layer

Several filters
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Char-CNN

Let’s try this model
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Char-CNN

Let’s try this model

C € R? : Matrix representation of a sequence of length 1(140, 300, ?).

H € RY*Y : Convolutional filter matrix where,
d : Dimensionality of character embeddings (used 30)

w : Width of convolution filter (3, 4, 5)
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A simple architecture

embedding_dim=30

n=140 characters

Embedding Layer

Sebastian Sierra (MindLab Research Group

Pooling size= [
nkel = 138

-

= - 0
4 O

nb_filtars=1000
or number of layer size= layer size= layer size=
feature maps 1000 150 -

Convolutional Layer MaxPooling Layer Fully Connected Soﬂma:s Layer

Layer
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Steps for applying a CNN

@ Apply a convolution between C and H to obtain a vector f € R/=w+1
fli]=(Cl*,i:i+w—1],H)

(A, B) is the Frobenius inner product. Tr(ABT)

@ This vector f is also known as feature map.

© Take the maximum value over time as the feature that represents
filter H. (K-max pooling)

~

f= relu(miax{f[i]} + b)

@ Then we do the same for all m filters.

z=1[f, ..., fm]
nd
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Intution behind

Why RelLU and not tanh?
Should | use multiple filter weights H?

Can | add another channel as in Computer Vision domain?

°

°

@ Should | use variable filter widths w?

°

@ Is Max-Pooling capturing the most important activation?
°

Would they capture morphological relations?
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0 CNN hyperparameters
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Regularization tricks

@ Use dropout (Gradients are only backpropagated through certain
inputs of z).
@ Constrain Ly norms of weight vectors of each class(rows in Softmax
matrx W) to a fixed number: If ||W || > s, the rescale it so
(5)
[We™| = s.

@ Early Stopping
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CNN in NLP - Previous Work

@ Previous works: NLP from scratch (Collobert et al. 2011).

@ Sentence or paragraph modelling using words as input (Kim 2014;
Kalchbrenner, Grefenstette, and Blunsom 2014; Johnson and
T. Zhang 2015a; Johnson and T. Zhang 2015b).

@ Text classification using characters as input (Kim et al. 2016;
X. Zhang, Zhao, and LeCun 2015)
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© Example: The Model
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